Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries

نویسندگان

  • Suli Yan
  • Simon Ng
  • Joeri Van Mierlo
چکیده

KOH-based electrolytes with different salt additives were investigated to reduce their corrosive nature toward Mg/Ni metal hydride alloys used as negative electrodes in nickel metal hydride (Ni/MH) batteries. Alkaline metal halide salts and oxyacid salts were studied as additives to the traditional KOH electrolyte with concentrations varying from 0.005 M to 1.77 M. Effects of the cations and anions of the additives on charge/discharge performance are discussed. The reduction potential of alkaline cations and radii of halogen anions were correlated with initial capacity and degradation of the metal hydride alloy. A synergistic effect between KOH and some oxyacid salt additives was observed and greatly influenced by the nature of the salt additives. It was suggested that both the formation of a solid film over the metal hydride surface and the promotion of proton transfer in the additives containing electrolytes led to a decreased degradation of the electrodes and an increased discharge capacity. 12 salt additives, NaC2H3O2, KC2H3O2, K2CO3, Rb2CO3, Cs2CO3, K3PO4, Na2WO4, Rb2SO4, Cs2SO4, NaF, KF, and KBr, were found to increase the corrosion resistance of the MgNi-based metal hydride alloy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical and Infrared Studies of the Reduction of Organic Carbonates

INTRODUCTION Electrolytes typically used in lithium batteries consist of a lithium salt dissolved in an organic solvent, or a mixture of these solvents. The solvents fall into two general classes: ethers or alkyl esters of carbonic acid. Because of lower volatility and higher flash point, the organic carbonates are the preferred solvent class in commercial batteries. Propylene carbonate (PC) ha...

متن کامل

Closed-loop Recycling of Nickel, Cobalt and Rare Earth Metals from Spent Nickel-metal Hydride- Batteries

Nickel-metal hydride batteries (Ni-MH) are storers of electrochemical energy, which have a higher specific storage capacity than lead or nickel-cadmium batteries. The demand for Nickel-metal hydride batteries is increasing rapidly since their market launch in the early 1990's. Today there is no suitable and sustainable recycling process to recover nickel, cobalt and rare-earth metals. The disca...

متن کامل

Non-aqueous Electrolytes and Interfacial Chemistry in Lithium- ion Batteries

Xu, C. 2017. Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion Batteries. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1525. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9931-0. Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable...

متن کامل

Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batter...

متن کامل

Electrolyte Additive Concentration for Maximum Energy Storage in Lead-Acid Batteries

This paper presents a method to assess the effect of electrolyte additives on the energy capacity of Pb-acid batteries. The method applies to additives of various kinds, including suspensions and gels. The approach is based on thermodynamics and leads to the definition of a region of admissible concentrations—the battery’s admissible range—where the battery can operate without suffering irrever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015